WATER EFFICIENT SOLUTIONS FOR TREES In urban environments, the conditions are commonly harsh for trees with reduced available soil volumes due to compaction and underground services, less infiltration of water into soils due to impervious surfaces, and reflected heat from roads, buildings and pavements. Coupled with increasing climatic variability, this means all but the most drought tolerant and hardy native species will need some form of ongoing and/or supplementary irrigation to thrive and reach their full potential canopy cover. There are a range of water efficient approaches available to support healthy and resilient tree growth. The adoption of these water efficient approaches can support the delivery of a green and cooler Greater Sydney. The following table provides a summary of a range of solutions to enable water efficient irrigation to urban trees in a range of contexts, settings and scales. The increasing scale of this application generally results in increasing benefit for tree health and vigour, and for broader benefits such as stormwater management, groundwater/deep soil moisture recharge and urban cooling. The costs are also likely to increase with this increasing scale of intervention, so the right solution will be very site dependent and will respond to the objectives of a project. More intensive solutions (for example linear irrigation and infiltration trenches) may be more suitable where constructed in conjunction with other significant infrastructure projects, such as pavement resurfacing or drainage works. Conversely, where limited disturbance is required, such as in instances where trees are established and disturbance to an existing road work is not desirable, less intensive interventions may be provided at a lower cost. Good Moderate Poor | Water
efficient
solution | Leaky pipe
around tree | Below ground infiltration trench or well | Sunken tree pit or
raingarden - open | Sunken tree pit -
grated | Below ground
storage | Permeable pavements | Structural soils
and cells | Irrigation
scheduling
technology | Drip irrigation | Water wells and butts | Soil moisture
retention
improvements | |---|---|---|---|--|---|---|---|---|--|---|---| | Example
image | Photo credit: Luke Galea
(Mackay Regional Council) | Photo credit: Tim Johnson
(City of Mitcham) | Photo credit: E2Designlab | Photo credit: E2Designlab | | Photo credit: E2Designlab | Image credit: Citygreen - www.citygreen.com) | CALIFORNIA SPACES | | | or and a second of the | | Description | Kerb cut-outs and
slotted pipes divert
road stormwater into
tree pit. | Kerb cut-outs direct
road stormwater to
a leaky infiltration
trench or well | An open sunken tree
pit captures road
stormwater over a
vegetated surface | A grated sunken
tree pit receives
stormwater from an
inlet to the surface of
a tree pit | A storage below the root zone of a sunken tree pit that makes water available to plants during dry periods. | Permeable pavements allow water to pass through them from the surface. Often used with structural soils and cells. | Structural soils and cells can support roads or pavement while storing water and allowing root growth. Often used with permeable pavement. | Soil moisture probes. Programming / weather station connections | Drip irrigation delivers water directly into the tree root zone. | Water wells and butts
allow rapid filling
from a water truck
with slow leakage to
a tree | Soil additives can improve properties such as aeration, wetting, soil water retention capacity and others. | | Site suitability Park | | | | | | | | | | | | | suitability
Plaza | | | | | | | | | | | | | Streetscape | | | | | | | | | | | | | suitability Likelihood of | f success due to the | following considera | ntions | | | | | | | | | | Design | | | | | | | | | | | | | simplicity Ease of | | | | | | | | | | | | | retrofit
Poorly | | | | | | | | | | | | | draining
soils (water
logging)* | | | | | | | | | | | | | Likelihood of delivering the following benefits | | | | | | | | | | | | | Stormwater treatment | | | | | | • | • | N/A | N/A | N/A | N/A | | Extended soil moisture | | | | | | | ** | • | | • | • | | retention Connection to deep soils | | | • | - | | • | • | • | | | 0 | | Other consid | lerations | | | | | | | | | | | | Typical water source | Stormwater from road
/ pavement | Stormwater from road/pavement. | Stormwater from road
/ pavement | Stormwater from road
/ pavement | Mains potable,
recycled, harvested
stormwater | Mains potable,
recycled, harvested
stormwater | Recycled water | Any | | Ideal soil
conditions | Freely draining soils | Freely draining soils | Any soil type with drainage, freely draining without | Any soil type with drainage, freely draining without | Any | Freely draining soils
or structural soils and
cells | Any | Any | Freely draining soils | Any | Response depends
on soils | | Typical
cost range /
tree*** | \$500 - \$1,200 | \$500 - \$1,500 | \$2,000 - \$10,000 | \$3,000 - \$15,000 | additional \$1,000 -
\$3,000 | \$1,500 - \$2,000 | \$5,000 - \$8,000
(soils)
\$5,000 - \$25,000
(cells) | \$5,000 to \$20,000 | varies | \$50 - \$400 | varies | | Applicability
to Greater
Sydney**** | Suitability is not
uniform across
Greater Sydney
depending on soil | Suitability is not
uniform across
Greater Sydney
depending on soil | Applicable to all three cities | Applicable to all three cities | Everywhere — preferred configuration in Western Parkland City area of Sydney | Applicable to all three cities | | Key benefits
/ drivers for
use | Low cost Low complexity | Low cost Low complexity Can be retrofitted Scalable | Useful for
stormwater quality
treatment Underdrainage
reduces risk of
water logging in
clay soils. Open surface
allows easy access
for maintenance Scalable Suits a variety of
contexts | Useful for stormwater quality treatment Underdrainage reduces risk of water logging in clay soils Grate reduces risk of soil compaction, whilst increasing trafficable area | Good water
availability Low chance of
waterlogging Lined systems so
can be adapted for
use on podiums
or areas with poor
soils (e.g. sodic
soils) | Soil moisture recharge over a wider area Pre-treatment to prevent sedimentation of other systems Improved stormwater management | Provides adequate soil volume in otherwise highly constrained sites Adequate soil volume reduces risk of root damage to other structures (e.g. pavement damage) Uncompacted soils can be provided under pavements | Easily retrofit to existing irrigation system Highly reliable supply except during water restrictions when using mains water | Where health risk prevents aerial application Low loss of water through runoff, aerial drift and evaporation | Low cost intervention that may improve efficiency of manual watering Can be set up to facilitate effective watering during drought response Generally low risk owing to low complexity solution | Can increase soil condition to support plants including plant available water and water retention | | Key
management
implications
/ risks | Limited water volumes in pipes Inlets and pipes can clog No drainage so at risk of waterlogging | Infiltration trenches not easily cleaned of sediment No drainage so at risk of waterlogging | Can dry out rapidly when sandy filter media used Filter media with high organic matter can leach nutrients into stormwater Drainage aggregate/gravel, when laid across the full base of the pit, will create a barrier to deep soil moisture access | Can dry out rapidly when sandy filter media is used Filter media with high organic matter can leach nutrients into stormwater Maintenance required to ensure surface does not clog Grate can inhibit maintenance | Ensure the storage
zone is sized for an
infrequent average
dry spell | Excessive wear from very heavy traffic and turning Clogging of the surface in the absence of effective regular maintenance | Higher cost
solution | Maintenance of irrigation systems can be high Calibration of soil moisture probes required Moderate expertise levels needed to realise benefits | Maintenance of irrigation systems can be high in streetscapes Prone to clogging Linear infrastructure may be broken by other construction activities Poor moisture distribution away from irrigation lines | Requires manual delivery of water to fill reservoirs Water trucks are a high cost response | Adds cost but
may be more cost
effective then
importing topsoil
particularly if the
other soil qualities
are good | | Cost benefit
summary | Good benefit cost
ratio in areas with
good drainage | Good benefit cost
ratio in areas with
good drainage | Good benefit cost
ratio in areas with
poorly draining soil
and requirement for
stormwater treatment | Good benefit cost
ratio in areas with
poorly draining
soil, pavement,
requirement for
stormwater treatment | Good benefit cost
ratio for trees which
may be impacted by
extended dry periods | Good benefit cost
ratio in areas that
require a hard
surface but where
infiltration is desired | Good benefit cost ratio in areas where there is a risk of compaction to roots from pavement and/ or where roots could damage pavement | Good benefit cost
ratio where demand
management is
required | Good benefit cost
ratio where demand
management is
required | Good benefit cost
ratio as a temporary
measure to improve
watering efficiency | Good benefit cost
ratio where insitu soil
condition is poor | *The risk of water logging in poorly draining soils can be addressed in design (e.g. inclusion of drainage) ** Can be designed with underground storage to improve soil moisture *** Assumes tree pits are approximately 10m². These costs are estimated to the cost of c ^{***} Assumes tree pits are approximately 10m². These costs are estimated ranges only and are based on best available data and experience gathered through built projects. These costs will vary depending on site conditions and scale. **** Greater Sydney can be described as a metropolis of three cities: the Western Parkland City, the Central River City and the Eastern Harbour City.